tutorials/015 - EMR.ipynb (184 lines of code) (raw):
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"[](https://github.com/aws/aws-sdk-pandas)\n",
"\n",
"# 15 - EMR"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import boto3\n",
"\n",
"import awswrangler as wr"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Enter your bucket name:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdin",
"output_type": "stream",
"text": [
" ··········································\n"
]
}
],
"source": [
"import getpass\n",
"\n",
"bucket = getpass.getpass()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Enter your Subnet ID:"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdin",
"output_type": "stream",
"text": [
" ························\n"
]
}
],
"source": [
"subnet = getpass.getpass()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Creating EMR Cluster"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"cluster_id = wr.emr.create_cluster(subnet)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Uploading our PySpark script to Amazon S3"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"script = \"\"\"\n",
"from pyspark.sql import SparkSession\n",
"spark = SparkSession.builder.appName(\"docker-awswrangler\").getOrCreate()\n",
"sc = spark.sparkContext\n",
"\n",
"print(\"Spark Initialized\")\n",
"\"\"\"\n",
"\n",
"_ = boto3.client(\"s3\").put_object(Body=script, Bucket=bucket, Key=\"test.py\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Submit PySpark step"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"step_id = wr.emr.submit_step(cluster_id, command=f\"spark-submit s3://{bucket}/test.py\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Wait Step"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"while wr.emr.get_step_state(cluster_id, step_id) != \"COMPLETED\":\n",
" pass"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Terminate Cluster"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"wr.emr.terminate_cluster(cluster_id)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.9.14",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.14"
}
},
"nbformat": 4,
"nbformat_minor": 4
}